In quantum mechanics, a **parity transformation** (also called **parity inversion**) is the flip in the sign of *one* spatial coordinate. In three dimensions, it can also refer to the simultaneous flip in the sign of all three spatial coordinates (a point reflection):

It can also be thought of as a test for chirality of a physical phenomenon, in that a parity inversion transforms a phenomenon into its mirror image. All fundamental interactions of elementary particles, with the exception of the weak interaction, are symmetric under parity. The weak interaction is chiral and thus provides a means for probing chirality in physics. In interactions that are symmetric under parity, such as electromagnetism in atomic and molecular physics, parity serves as a powerful controlling principle underlying quantum transitions.

A matrix representation of **P** (in any number of dimensions) has determinant equal to −1, and hence is distinct from a rotation, which has a determinant equal to 1. In a two-dimensional plane, a simultaneous flip of all coordinates in sign is *not* a parity transformation; it is the same as a 180°-rotation.

In quantum mechanics, wave functions which are unchanged by a parity transformation are described as even functions, while those which change sign under a parity transformation are odd functions.

# Simple symmetry relations

Under rotations, classical geometrical objects can be classified into scalars, vectors, and tensors of higher rank. In classical physics, physical configurations need to transform under representations of every symmetry group.

Quantum theory predicts that states in a Hilbert space do not need to transform under representations of the group of rotations, but only under projective representations. The word *projective* refers to the fact that if one projects out the phase of each state, where we recall that the overall phase of a quantum state is not an observable, then a projective representation reduces to an ordinary representation. All representations are also projective representations, but the converse is not true, therefore the projective representation condition on quantum states is weaker than the representation condition on classical states.

The projective representations of any group are isomorphic to the ordinary representations of a central extension of the group. For example, projective representations of the 3-dimensional rotation group, which is the special orthogonal group SO(3), are ordinary representations of the special unitary group SU(2) (see Representation theory of SU(2)). Projective representations of the rotation group that are not representations are called spinors, and so quantum states may transform not only as tensors but also as spinors.

If one adds to this a classification by parity, these can be extended, for example, into notions of

*scalars*(*P*= +1) and*pseudoscalars*(*P*= −1) which are rotationally invariant.*vectors*(*P*= −1) and*axial vectors*(also called*pseudovectors*) (*P*= +1) which both transform as vectors under rotation.

One can define **reflections** such as

which also have negative determinant and form a valid parity transformation. Then, combining them with rotations (or successively performing *x*-, *y*-, and *z*-reflections) one can recover the particular parity transformation defined earlier. The first parity transformation given does not work in an even number of dimensions, though, because it results in a positive determinant. In even dimensions only the latter example of a parity transformation (or any reflection of an odd number of coordinates) can be used.

# Classical mechanics

# Effect of spatial inversion on some variables of classical physics

Classical variables, predominantly scalar quantities, which do not change upon spatial inversion include:

Classical variables, predominantly vector quantities, which have their sign flipped by spatial inversion include:

# Quantum mechanics

The wave functions of a particle moving into an external potential, which is centrosymmetric (potential energy invariant with respect to a space inversion, symmetric to the origin), either remain invariable or change signs: these two possible states are called the even state or odd state of the wave functions.^{[3]}

The law of conservation of parity of particle (not true for the beta decay of nuclei^{[4]}) states that, if an isolated ensemble of particles has a definite parity, then the parity remains invariable in the process of ensemble evolution.

The parity of the states of a particle moving in a spherically symmetric external field is determined by the angular momentum, and the particle state is defined by three quantum numbers: total energy, angular momentum and the projection of angular momentum.^{[3]}

When parity generates the Abelian group ℤ2, one can always take linear combinations of quantum states such that they are either even or odd under parity (see the figure). Thus the parity of such states is ±1. The parity of a multiparticle state is the product of the parities of each state; in other words parity is a multiplicative quantum number.

- If and have the same parity, then where is the position operator.
- For a state of orbital angular momentum with z-axis projection , then .
- If , then atomic dipole transitions only occur between states of opposite parity.
^{[5]} - If , then a non-degenerate eigenstate of is also an eigenstate of the parity operator; i.e., a non-degenerate eigenfunction of is either invariant to or is changed in sign by .

# Many-particle systems: atoms, molecules, nuclei

The overall parity of a many-particle system is the product of the parities of the one-particle states. It is -1 if an odd number of particles are in odd-parity states, and +1 otherwise. Different notations are in use to denote the parity of nuclei, atoms, and molecules.

Atomic orbitals have parity (-1)ℓ, where the exponent ℓ is the azimuthal quantum number. The parity is odd for orbitals p, f, ... with ℓ = 1, 3, ..., and an atomic state has odd parity if an odd number of electrons occupy these orbitals. For example, the ground state of the nitrogen atom has the electron configuration 1s22s22p3, and is identified by the term symbol 4So, where the superscript o denotes odd parity. However the third excited term at about 83,300 cm−1 above the ground state has electron configuration 1s22s22p23s has even parity since there are only two 2p electrons, and its term symbol is 4P (without an o superscript).^{[6]}

Only some molecules have a centre of symmetry, including all homonuclear diatomic molecules as well as certain symmetric molecules such as ethylene, benzene, xenon tetrafluoride and sulphur hexafluoride. For such centrosymmetric molecules, the parity of each molecular orbital is either g (gerade or even) or u (ungerade or odd). An electronic state is u if and only if it contains an odd number of electrons in u orbitals.

For molecules with no centre of symmetry, including all heteronuclear diatomics as well as the majority of polyatomics, inversion is not a symmetry operation and the orbitals and states cannot be described as even or odd.

In atomic nuclei, the state of each nucleon (proton or neutron) has even or odd parity, and nucleon configurations can be predicted using the nuclear shell model. As for electrons in atoms, the nucleon state has odd overall parity if and only if the number of nucleons in odd-parity states is odd. The parity is usually written as a + (even) or – (odd) following the nuclear spin value. For example the isotopes of oxygen include 17O(5/2+), meaning that the spin is 5/2 and the parity is even. The shell model explains this because the first 16 nucleons are paired so that each pair has spin zero and even parity, and the last nucleon is in the 1d5/2 shell which has even parity since ℓ = 2 for a d orbital.^{[7]}

# Quantum field theory

To show that quantum electrodynamics is invariant under parity, we have to prove that the action is invariant and the quantization is also invariant. For simplicity we will assume that canonical quantization is used; the vacuum state is then invariant under parity by construction. The invariance of the action follows from the classical invariance of Maxwell's equations. The invariance of the canonical quantization procedure can be worked out, and turns out to depend on the transformation of the annihilation operator:

where **p** denotes the momentum of a photon and ± refers to its polarization state. This is equivalent to the statement that the photon has odd intrinsic parity. Similarly all vector bosons can be shown to have odd intrinsic parity, and all axial-vectors to have even intrinsic parity.

There is a straightforward extension of these arguments to scalar field theories which shows that scalars have even parity, since

This is true even for a complex scalar field. (*Details of spinors are dealt with in the article on the*Dirac equation*, where it is shown that fermions and antifermions have opposite intrinsic parity.*)

With fermions, there is a slight complication because there is more than one spin group.

# Parity in the standard model

In the Standard Model of fundamental interactions there are precisely three global internal U(1) symmetry groups available, with charges equal to the baryon number *B*, the lepton number *L* and the electric charge *Q*. The product of the parity operator with any combination of these rotations is another parity operator. It is conventional to choose one specific combination of these rotations to define a standard parity operator, and other parity operators are related to the standard one by internal rotations. One way to fix a standard parity operator is to assign the parities of three particles with linearly independent charges *B*, *L* and *Q*. In general one assigns the parity of the most common massive particles, the proton, the neutron and the electron, to be +1.

Steven Weinberg has shown that if **P**2 = (−1)*F*, where *F* is the fermion number operator, then, since the fermion number is the sum of the lepton number plus the baryon number, *F* = *B* + *L*, for all particles in the Standard Model and since lepton number and baryon number are charges *Q* of continuous symmetries *e**iQ*, it is possible to redefine the parity operator so that **P**2 = 1. However, if there exist Majorana neutrinos, which experimentalists today believe is possible, their fermion number is equal to one because they are neutrinos while their baryon and lepton numbers are zero because they are Majorana, and so (−1)*F* would not be embedded in a continuous symmetry group. Thus Majorana neutrinos would have parity ±*i*.

Although parity is conserved in electromagnetism, strong interactions and gravity, it is violated in weak interactions. The Standard Model incorporates **parity violation** by expressing the weak interaction as a chiral gauge interaction. Only the left-handed components of particles and right-handed components of antiparticles participate in weak interactions in the Standard Model. This implies that parity is not a symmetry of our universe, unless a hidden mirror sector exists in which parity is violated in the opposite way.

By the mid-20th century, it had been suggested by several scientists that parity might not be conserved (in different contexts), but without solid evidence these suggestions were not considered important. Then, in 1956, a careful review and analysis by theoretical physicists Tsung-Dao Lee and Chen-Ning Yang^{[9]} went further, showing that while parity conservation had been verified in decays by the strong or electromagnetic interactions, it was untested in the weak interaction. They proposed several possible direct experimental tests. They were mostly ignored, but Lee was able to convince his Columbia colleague Chien-Shiung Wu to try it. She needed special cryogenic facilities and expertise, so the experiment was done at the National Bureau of Standards.

In 1957 Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson found a clear violation of parity conservation in the beta decay of cobalt-60.^{[10]} As the experiment was winding down, with double-checking in progress, Wu informed Lee and Yang of their positive results, and saying the results need further examination, she asked them not to publicize the results first. However, Lee revealed the results to his Columbia colleagues on 4 January 1957 at a "Friday Lunch" gathering of the Physics Department of Columbia. Three of them, R. L. Garwin, Leon Lederman, and R. Weinrich modified an existing cyclotron experiment, and they immediately verified the parity violation.^{[11]} They delayed publication of their results until after Wu's group was ready, and the two papers appeared back to back in the same physics journal.

After the fact, it was noted that an obscure 1928 experiment had in effect reported parity violation in weak decays, but since the appropriate concepts had not yet been developed, those results had no impact.^{[12]} The discovery of parity violation immediately explained the outstanding τ–θ puzzle in the physics of kaons.

In 2010, it was reported that physicists working with the Relativistic Heavy Ion Collider (RHIC) had created a short-lived parity symmetry-breaking bubble in quark-gluon plasmas. An experiment conducted by several physicists including Yale's Jack Sandweiss as part of the STAR collaboration, suggested that parity may also be violated in the strong interaction.^{[13]} It is predicted that this local parity violation, which would be analogous to the effect that is induced by fluctuation of the axion field, manifest itself by chiral magnetic effect.^{[14]}^{[15]}

To every particle one can assign an **intrinsic parity** as long as nature preserves parity. Although weak interactions do not, one can still assign a parity to any hadron by examining the strong interaction reaction that produces it, or through decays not involving the weak interaction, such as rho meson decay to pions.