You Might Like
A medical laboratory run by the Graduate Institute of Cancer Biology of <a href="/content/China_Medical_University_(Taiwan)" style="color:blue">China Medical University</a> (<a href="/content/Taiwan" style="color:blue">Taiwan</a>)
A medical laboratory run by the Graduate Institute of Cancer Biology of China Medical University (Taiwan)

A laboratory (UK: /ləˈbɒrətəri/, US: /ˈlæbərətɔːri/; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratory services are provided in a variety of settings: physicians offices, clinics, hospitals, and regional and national referral centers.[1]


Laboratories used for scientific research take many forms because of the differing requirements of specialists in the various fields of science and engineering.

Scientific laboratories can be found as research room and learning spaces in schools and universities, industry, government, or military facilities, and even aboard ships and spacecraft.

Despite the underlying notion of the lab as a confined space for experts,[2] the term "laboratory" is also increasingly applied to workshop spaces such as Living Labs, Fab Labs, or Hackerspaces, in which people meet to work on societal problems or make prototypes, working collaboratively or sharing resources.[3][4][5] This development is inspired by new, participatory approaches to science and innovation and relies on user-centred design methods[6] and concepts like Open innovation or User innovation,.[7][8] One distinctive feature of work in Open Labs is phenomena of translation, driven by the different backgrounds and levels of expertise of the people involved.[9]


Early instances of "laboratories" recorded in English involved alchemy and the preparation of medicines.[10]

The emergence of Big Science during World War II increased the size of laboratories and scientific equipment, introducing particle accelerators and similar devices.

The earliest laboratory according to the present evidence is a home laboratory of Pythagoras of Samos, the well-known Greek philosopher and scientist. This laboratory was created when Pythagoras conducted an experiment about tones of sound and vibration of string.[11]

In the painting of Louis Pasteur by Albert Edelfelt in 1885, Louis Pasteur is shown comparing a note in his left hand with a bottle filled with a solid in his right hand, and not wearing any personal protective equipment.[12]

Researching in teams started in the 19th century, and many new kinds of equipment were developed in the 20th century.[13]

A 16th century underground alchemical laboratory was accidentally discovered in the year 2002.


Laboratory techniques are the set of procedures used on natural sciences such as chemistry, biology, physics to conduct an experiment, all of them follow the scientific method; while some of them involve the use of complex laboratory equipment from laboratory glassware to electrical devices, and others require more specific or expensive supplies.

Equipment and supplies

Laboratory equipment refers to the various tools and equipment used by scientists working in a laboratory:

The classical equipment includes tools such as Bunsen burners and microscopes as well as specialty equipment such as operant conditioning chambers, spectrophotometers and calorimeters.

Laboratory equipment is generally used to either perform an experiment or to take measurements and gather data. Larger or more sophisticated equipment is generally called a scientific instrument.

Specialized types

The title of laboratory is also used for certain other facilities where the processes or equipment used are similar to those in scientific laboratories. These notably include:


In many laboratories, hazards are present.

The Occupational Safety and Health Administration (OSHA) in the United States, recognizing the unique characteristics of the laboratory workplace, has tailored a standard for occupational exposure to hazardous chemicals in laboratories. This standard is often referred to as the "Laboratory Standard". Under this standard, a laboratory is required to produce a Chemical Hygiene Plan (CHP) which addresses the specific hazards found in its location, and its approach to them.

In determining the proper Chemical Hygiene Plan for a particular business or laboratory, it is necessary to understand the requirements of the standard, evaluation of the current safety, health and environmental practices and assessment of the hazards.

Inspections and audits like also be conducted on a regular basis to assess hazards due to chemical handling and storage, electrical equipment, biohazards, hazardous waste management, chemical waste, housekeeping and emergency preparedness, radiation safety, ventilation as well as respiratory testing and indoor air quality. An important element of such audits is the review of regulatory compliance and the training of individuals who have access to and/or work in the laboratory. Training is critical to the ongoing safe operation of the laboratory facility. Educators, staff and management must be engaged in working to reduce the likelihood of accidents, injuries and potential litigation. Efforts are made to ensure laboratory safety videos are both relevant and engaging.[15]


Organization of laboratories is an area of focus in sociology.

The laboratory itself is a historically dated organizational model.

Some forms of organization in laboratories include:

  • Their size: Varies from a handful of researches to several hundred.
  • The division of labor: "Occurs between designers and operatives; researchers, engineers and technicians; theoreticians and experimenters; senior researchers, junior researchers and students; those who publish, those who sign the publications and the others; and between specialities." [18]
  • The coordination mechanisms: Which includes the formalization of objectives and tasks; the standardization of procedures (protocols, project management, quality management, knowledge management), the validation of publications and cross-cutting activities (number and type of seminars).

There are three main factors that contribute to the organizational form of a laboratory :

  • The educational background of the researchers and their socialization process.
  • The intellectual process involved in their work, including the type of investigation and equipment they use.
  • The laboratory's history.

Other forms of organization include social organization.

A study by H. R. H Richard, involving two laboratories, will help elucidate the concept of social organization in laboratories.

Through ethnographic studies, one finding is that, among the personnel, each class (researchers, administrators...) has a different degree of entitlement, which varies per laboratory. Entitlement can be both formal or informal (meaning it's not enforced), but each class is aware and conforms to its existence.The degree of entitlement, which is also referred to as a staff's rights, affects social interaction between staff. By looking at the various interactions among staff members, we can determine their social position in the organization. As an example, administrators, in one lab of the study, do not have the right to ask the Locator where the researchers currently are, as they are not entitled to such information. On the other hand, researchers do have access to this type of information. So a consequence of this social hierarchy is that the Locator discloses various degrees of information, based on the staff member and their rights. The Locator does not want to disclose information that could jeopardize his relationship with the members of staff. The Locator adheres to the rights of each class.

Social hierarchy is also related to attitudes towards technologies.

Another finding is the resistance to change in a social organization.

In summary, differences in attitude among members of the laboratory are explained by social organization: A person's attitudes are intimately related to the role they have in an organization.

See also

You Might Like