**Electromagnetism** is a branch of physics involving the study of the **electromagnetic force**, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force is carried by electromagnetic fields composed of electric fields and magnetic fields, and it is responsible for electromagnetic radiation such as light. It is one of the four fundamental interactions (commonly called forces) in nature, together with the strong interaction, the weak interaction, and gravitation.^{[1]} At high energy the weak force and electromagnetic force are unified as a single electroweak force.

Electromagnetic phenomena are defined in terms of the electromagnetic force, sometimes called the Lorentz force, which includes both electricity and magnetism as different manifestations of the same phenomenon. The electromagnetic force plays a major role in determining the internal properties of most objects encountered in daily life. The electromagnetic attraction between atomic nuclei and their orbital electrons holds atoms together. Electromagnetic forces are responsible for the chemical bonds between atoms which create molecules, and intermolecular forces. The electromagnetic force governs all chemical processes, which arise from interactions between the electrons of neighboring atoms.

There are numerous mathematical descriptions of the electromagnetic field. In classical electrodynamics, electric fields are described as electric potential and electric current. In Faraday's law, magnetic fields are associated with electromagnetic induction and magnetism, and Maxwell's equations describe how electric and magnetic fields are generated and altered by each other and by charges and currents.

The theoretical implications of electromagnetism, particularly the establishment of the speed of light based on properties of the "medium" of propagation (permeability and permittivity), led to the development of special relativity by Albert Einstein in 1905.

# History of the theory

Originally, electricity and magnetism were considered to be two separate forces.

While preparing for an evening lecture on 21 April 1820, Hans Christian Ørsted made a surprising observation. As he was setting up his materials, he noticed a compass needle deflected away from magnetic north when the electric current from the battery he was using was switched on and off. This deflection convinced him that magnetic fields radiate from all sides of a wire carrying an electric current, just as light and heat do, and that it confirmed a direct relationship between electricity and magnetism.

At the time of discovery, Ørsted did not suggest any satisfactory explanation of the phenomenon, nor did he try to represent the phenomenon in a mathematical framework.

His findings resulted in intensive research throughout the scientific community in electrodynamics. They influenced French physicist André-Marie Ampère's developments of a single mathematical form to represent the magnetic forces between current-carrying conductors. Ørsted's discovery also represented a major step toward a unified concept of energy.

This unification, which was observed by Michael Faraday, extended by James Clerk Maxwell, and partially reformulated by Oliver Heaviside and Heinrich Hertz, is one of the key accomplishments of 19th-century mathematical physics.^{[2]} It has had far-reaching consequences, one of which was the understanding of the nature of light. Unlike what was proposed by the electromagnetic theory of that time, light and other electromagnetic waves are at present seen as taking the form of quantized, self-propagating oscillatory electromagnetic field disturbances called photons. Different frequencies of oscillation give rise to the different forms of electromagnetic radiation, from radio waves at the lowest frequencies, to visible light at intermediate frequencies, to gamma rays at the highest frequencies.

Ørsted was not the only person to examine the relationship between electricity and magnetism.

An earlier (1735), and often neglected, connection between electricity and magnetism was reported by a Dr. Cookson.^{[4]} The account stated:

E. T. Whittaker suggested in 1910 that this particular event was responsible for lightning to be "credited with the power of magnetizing steel; and it was doubtless this which led Franklin in 1751 to attempt to magnetize a sewing-needle by means of the discharge of Leyden jars." ^{[5]}

# Fundamental forces

The electromagnetic force is one of the four known fundamental forces. The other fundamental forces are:

- the weak nuclear force, which binds to all known particles in the Standard Model, and causes certain forms of radioactive decay. (In particle physics though, the electroweak interaction is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction);
- the strong nuclear force, which binds quarks to form nucleons, and binds nucleons to form nuclei
- the gravitational force.

All other forces (e.g., friction, contact forces) are derived from these four fundamental forces (including momentum which is carried by the movement of particles).^{[6]}

The electromagnetic force is responsible for practically all phenomena one encounters in daily life above the nuclear scale, with the exception of gravity.

A necessary part of understanding the intra-atomic and intermolecular forces is the effective force generated by the momentum of the electrons' movement, such that as electrons move between interacting atoms they carry momentum with them.

# Classical electrodynamics

In 1600, William Gilbert proposed, in his De Magnete, that electricity and magnetism, while both capable of causing attraction and repulsion of objects, were distinct effects. Mariners had noticed that lightning strikes had the ability to disturb a compass needle. The link between lightning and electricity was not confirmed until Benjamin Franklin's proposed experiments in 1752. One of the first to discover and publish a link between man-made electric current and magnetism was Romagnosi, who in 1802 noticed that connecting a wire across a voltaic pile deflected a nearby compass needle. However, the effect did not become widely known until 1820, when Ørsted performed a similar experiment.^{[8]} Ørsted's work influenced Ampère to produce a theory of electromagnetism that set the subject on a mathematical foundation.

A theory of electromagnetism, known as classical electromagnetism, was developed by various physicists during the period between 1820 and 1873 when it culminated in the publication of a treatise by James Clerk Maxwell, which unified the preceding developments into a single theory and discovered the electromagnetic nature of light.^{[9]} In classical electromagnetism, the behavior of the electromagnetic field is described by a set of equations known as Maxwell's equations, and the electromagnetic force is given by the Lorentz force law.^{[10]}

One of the peculiarities of classical electromagnetism is that it is difficult to reconcile with classical mechanics, but it is compatible with special relativity. According to Maxwell's equations, the speed of light in a vacuum is a universal constant that is dependent only on the electrical permittivity and magnetic permeability of free space. This violates Galilean invariance, a long-standing cornerstone of classical mechanics. One way to reconcile the two theories (electromagnetism and classical mechanics) is to assume the existence of a luminiferous aether through which the light propagates. However, subsequent experimental efforts failed to detect the presence of the aether. After important contributions of Hendrik Lorentz and Henri Poincaré, in 1905, Albert Einstein solved the problem with the introduction of special relativity, which replaced classical kinematics with a new theory of kinematics compatible with classical electromagnetism. (For more information, see History of special relativity.)

In addition, relativity theory implies that in moving frames of reference, a magnetic field transforms to a field with a nonzero electric component and conversely, a moving electric field transforms to a nonzero magnetic component, thus firmly showing that the phenomena are two sides of the same coin.

# Extension to nonlinear phenomena

The Maxwell equations are *linear,* in that a change in the sources (the charges and currents) results in a proportional change of the fields. Nonlinear dynamics can occur when electromagnetic fields couple to matter that follows nonlinear dynamical laws. This is studied, for example, in the subject of magnetohydrodynamics, which combines Maxwell theory with the Navier–Stokes equations.

# Quantities and units

**Electromagnetic units** are part of a system of electrical units based primarily upon the magnetic properties of electric currents, the fundamental SI unit being the ampere. The units are:

- ampere (electric current)
- coulomb (electric charge)
- farad (capacitance)
- henry (inductance)
- ohm (resistance)
- siemens (conductance)
- tesla (magnetic flux density)
- volt (electric potential)
- watt (power)
- weber (magnetic flux)

In the electromagnetic cgs system, electric current is a fundamental quantity defined via Ampère's law and takes the permeability as a dimensionless quantity (relative permeability) whose value in a vacuum is unity. As a consequence, the square of the speed of light appears explicitly in some of the equations interrelating quantities in this system.

Formulas for physical laws of electromagnetism (such as Maxwell's equations) need to be adjusted depending on what system of units one uses. This is because there is no one-to-one correspondence between electromagnetic units in SI and those in CGS, as is the case for mechanical units. Furthermore, within CGS, there are several plausible choices of electromagnetic units, leading to different unit "sub-systems", including Gaussian, "ESU", "EMU", and Heaviside–Lorentz. Among these choices, Gaussian units are the most common today, and in fact the phrase "CGS units" is often used to refer specifically to CGS-Gaussian units.

# See also

- Abraham–Lorentz force
- Aeromagnetic surveys
- Computational electromagnetics
- Double-slit experiment
- Electromagnet
- Electromagnetic induction
- Electromagnetic wave equation
- Electromechanics
- Geophysics
- Introduction to electromagnetism
- Magnetostatics
- Magnetoquasistatic field
- Optics
- Relativistic electromagnetism
- Wheeler–Feynman absorber theory